Friday, December 22, 2023

(Last Edit: 12/29/23)

Density Images

(Material)[g/cm^3]
1) Teflon  2.20   PTFE
2) Al      2.70   Aluminum 6061
3) Steel   7.87   AISI 1018
4) Ti      4.43   Titanium 5

Mass Attenuation Coefficients


Figure 1
1) Teflon
6: 0.240183
9: 0.759818

2) Aluminium 6061
12: 0.012
13: 0.969
14: 0.008
26: 0.007
29: 0.004

3) Steel (AISI 1018)
6:  0.0017
25: 0.0075
26: 0.9908

4) Titanium (5)
13: 0.06
22: 0.90
23: 0.04

Matlab Code - Mass Attenuation Coefficients (Figure 1)

E = [3 4 5 6 8 10 15 20 30 40 50 60 80 100 150]'; %15 energy levels

%Density [g/cm^3]
R_tf = 2.20;
R_al = 2.70;
R_st = 7.87;
R_ti = 4.43;

%MU
M_tf = 0.240183*MU(6) + 0.759818*MU(9);
M_al = .969*MU(13)+.012*MU(12)+.008*MU(14)+.007*MU(26)+.004*MU(29);
M_st = .9908*MU(26) + .0075*MU(25) + .0017*MU(6);
M_ti = .90*MU(22) + .06*MU(13) + .04*MU(23);

figure
loglog(E,M_tf);
hold on
loglog(E,M_al);
loglog(E,M_st);
loglog(E,M_ti);

Effective \(\mu\)

For two objects of length \(t\). $$ \begin{align*} \text{AU} = \left ( M_1 \rho_1 + M_2 \rho_2 \right ) t = \mu_\text{eff} t \end{align*} $$

Energy-Fluence

The Energy-Fluence vector (\(\Psi\)) gives the source and detector response for an energy integrating detector. \(\sum_i \Psi_i = 1\) This is a vector form of the notation used by Lu 2019. Eq (1) gives the measured data \(d\) as a function of length \(t\). $$ \begin{align*} d = \frac{I}{I_0} = \Psi^T e^{- \mu_\text{eff} t} \tag{Eq 1} \end{align*} $$ Energy-Fluence weights are selected proportional to bin width for a flat energy integrating detector.
Energy-Fluence
[keV]	[bin width]
3	1
4	1
5	1
6	1.5
8	2
10	3.5
15	5
20	7.5
30	10
40	10
50	10
60	15
80	20
100	35
150	50

Loss of Dimensionality

Let \(\text{AU} = -\text{ln}(d)\). The plot in Figure (2) shows the relationship to \(x\).

Figure 2

Matlab Code - Loss of Dimensionality (Figure 2)

E = [3 4 5 6 8 10 15 20 30 40 50 60 80 100 150]'; %15 energy levels
Psi = [1 1 1 1.5 2 3.5 5 7.5 10 10 10 15 20 35 50]'; %bin width
Psi = Psi/sum(Psi); %normalize to 1

%Density [g/cm^3]
R_tf = 2.20;
R_al = 2.70;
R_st = 7.87;
R_ti = 4.43;

%Mass Attenuation Coefficients
M_tf = 0.240183*MU(6) + 0.759818*MU(9);
M_al = .969*MU(13)+.012*MU(12)+.008*MU(14)+.007*MU(26)+.004*MU(29);
M_st = .9908*MU(26) + .0075*MU(25) + .0017*MU(6);
M_ti = .90*MU(22) + .06*MU(13) + .04*MU(23);

%Energy-Fluence
t = linspace(0,5,1000);%lengths [cm]

d_tf = sum(Psi.*exp(-M_tf*R_tf.*t));
d_al = sum(Psi.*exp(-M_al*R_al.*t));
d_st = sum(Psi.*exp(-M_st*R_st.*t));
d_ti = sum(Psi.*exp(-M_ti*R_ti.*t));

%Wishful Thinking
AU_tf = -log(d_tf);
AU_al = -log(d_al);
AU_st = -log(d_st);
AU_ti = -log(d_ti);

X_tf = R_tf*t;
X_al = R_al*t;
X_st = R_st*t;
X_ti = R_ti*t;

figure
axes
hold on
plot(AU_tf, X_tf)
plot(AU_al, X_al)
plot(AU_st, X_st)
plot(AU_ti, X_ti)
For a monoenergetic 80 keV source the Energy-Fluence spectrum becomes:
Energy-Fluence
[keV]	[weight]
3	0
4	0
5	0
6	0
8	0
10	0
15	0
20	0
30	0
40	0
50	0
60	0
80	1
100	0
150	0

Figure 3