"Backslash" Notation Examples
LU Factoring
$$
\begin{align*}
\begin{bmatrix}
1 & 3 & -2\\
-5 & 2 & 1\\
-2 & -2 & 3
\end{bmatrix} x &= \begin{bmatrix} 1\\2\\3 \end{bmatrix} \\
A x &= b \\
P^\text{T} L U x &= b\\
L U x &= P b\\
U x &= L \backslash P b\\
x &= U \backslash L \backslash P b \tag{Eq 1}\\
x &= \begin{bmatrix} 1\\2\\3 \end{bmatrix}
\end{align*}
$$
Matlab Code
% LU Factoring
A = [
1 3 -2
-5 2 1
-2 -2 3];
b = [1 2 3]';
[L, U, P] = lu(A);
x = U \ ( L \ P*b ); %solve system
Least Squares (with constraints)
Find \(x = \begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\)
$$
\begin{align*}
X &= \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix} \quad
b = \begin{bmatrix} 1.5\\2.5\\3\\3.2\\3.5 \end{bmatrix}\\
\end{align*}\\
$$
$$
\begin{align*}
Ax &= b\\
\begin{bmatrix}
X^2 & X & 1
\end{bmatrix} x &= b
\end{align*}
$$
Given Constraints:
$$
\begin{align*}
x_1 + x_2 + x_3 &= 1.5\\
10x_1 + x_2&= 0
\end{align*}
$$
$$
\begin{align*}
\begin{bmatrix}
1&1&1\\
10& 1&0
\end{bmatrix} x &=
\begin{bmatrix}
1.5\\0
\end{bmatrix}\\
C x &= d
\end{align*}
$$
$$
\begin{align*}
x &= x_p + N e\\
x_p &= C \backslash d\\
N &= \text{null}(C)
\end{align*}
$$
Solve for \(e\):
$$
\begin{align*}
A x &= b\\
A ( x_p + N e ) &= b\\
A x_p + ANe &= b\\
ANe &= b- A x_p\\
Ne &= A \backslash (b - A x_p)\\
e &= N \backslash A \backslash (b - A x_p) \tag{Eq 2}\\
e &= -1.5779
\end{align*}
$$
Matlab Code
%Least Squares
X = [1 2 3 4 5]';
b = [1.5 2.5 3 3.2 3.5]';
A = [X.^2 X ones(5,1)];
C = [1 1 1; 10 1 0];
d = [1.5 ; 0];
xp = C\d; %particular solution
N = null(C); %basis for nullspace
e = N \ ( A \ (b-A*xp) ); %best coordinates in nullspace
x = xp + N*e; %solution
i = linspace(0,5,100);
j = x(1)*i.^2 + x(2)*i + x(3);
plot(X,b,'rx');
hold on
plot(i,j,'k:');
title('Least Squares Fit')
Least Squares QR
$$
\begin{align*}
\begin{bmatrix}
0 & 0 & 1\\
0 & 1 & 1\\
1 & 1 & 1\\
1 & 1 & 0\\
1 & 0 & 0
\end{bmatrix} x &= \begin{bmatrix} .5\\ .7\\ 1 \\.5 \\.3 \end{bmatrix}\\
A x &= b
\end{align*}
$$
Solve for \(x\):
$$
\begin{align*}
A^\text{T} A x &= A^\text{T} b\\
A &= QR\\
(QR)^\text{T} Q R x &= A^\text{T} b\\
R^\text{T} Q^\text{T} Q R x &= A^\text{T} b\\
R^\text{T} R x &= A^\text{T} b\\
R x &= R^\text{T} \backslash A^\text{T}b\\
x &= R \backslash R^\text{T} \backslash A^\text{T}b \tag{Eq 3}\\
x &= \begin{bmatrix} .3\\.2\\.5 \end{bmatrix}
\end{align*}
$$
Matlab Code
%QR Solver
A = [
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0
];
b = [.5 .7 1 .5 .3]';
[Q,R] = qr(A,0);
x = R \ ( R' \ A'*b );